
U.S.De~artment
of Transportation

Publication No. FHWA-TS-88422

December 1988

Developing Expert Systems

Research, Development, and Technology
Turner-Fairbank Highway Research Center

6300 Georgetown Pike
McLean, Virginia 22101-2296

FOREWORD

This technology share report provides an overview of expert systems and
problems that are amenable to solution by expert systems, and guidelines
for building expert systems. The guidelines were developed by the Federal
Highway Administration to address the questions faced by highway admini-
strators such as, “Does this technology have application in highway
engineering and operations?”, “What types of problems can be addressed?”,
“How are these computer programs different from other computer programs?”
Properly constructed expert systems can be very effective training aids
as well as supporting tools for virtually every aspect of highway engineering
and management.

Copies of the report are available from the National Technical Information
Services, 5285 Port Royal Road, Springfield, Virginia 22161, (703) 487-4690.

Stanl<y R.-Byi;gton, Director
Office of Implementation

NOTICE

This document is disseminated under the sponsorship of the Department of
Transportation in the interest of information exchange. The United States
Government assumes no liability for its contents or use thereof.

The contents of this report reflect the views of the contractor who is
responsible for the facts and the accuracy of the data presented herein.
The contents do not necessarily reflect the official policy of the Depart-
ment of Transportation.

This report does not constitute a standard, specification, or regulation.

The United States Government does not endorse products or manufacturers.
Trade or manufacturers’ names appear herein only because they are considered
essential to the object of this document.

Technical Report Documentation Page

1. Report No. 2. Government Accession No. 3. Recipient’s Catalog No.

FHWA-TS-88-022
1 I

4, T,tle and Subtitle 5,, Renort Dote

Developing Expert Systems _December 1988
6. Performing Organization Code

8. Per fc. rming Organization Report No.
7. Author(s) I

David Barnett, Charles Jackson, and James A. Wentworth

9. Performing Organization Name and Address 10. Work Unit No. (T RAIS)

ST.4TCOM, Inc.
ljCO3113C0106

11.contract or Grant No.

DTF}161-87-Z-00129
L

13. Ty eof. Rep rt nd Peri d Covered
7

12. Sponsoring Agency Name onod ~ddre~s Tas[Flna~ ~epor?
Federal Highway Admlnlstration January 1988 -
Office of Implementation September 1988
6300 Georgetown Pike 14. Sponsoring Agency Code

~lCLean, V;rginia 22101-2296
1

15. Supplementary Notes

FHWA Contract Ilanager: James A. ~!entworth (HRT-20)

16. Abstract

Expert Systems are computer programs designed to include a.simulation of the
reasoning and decision-making processes of human ex~erts. This report provides a
set of general guidelines for the development and distribution of highway related
Expert Systems. This expands the guidelines provided in Chapter X, Expert Systems,
of the Information Resources Management !Ianual. Included in this set of guidelines
is information on developing, distributing and maintaining Expert Systems. The
general development guidelines include discussions of: (1) a representative set of
problem types that are amenable to solutions using Expert Systems; (2) a description
of the major components of a typical Expert System and how these components interact
in a problem solving situation; and (3) a set of Expert System development guide-
lines and a set of guidelines for maintaining an Expert System.

17. Key Words 18. Distribution Statement

Expert System, Knowledge-Based Expert No restrictions. This document is
System, Artificial Intelligence, available to the public through the
Knowledge-Base, Knowledge Engineering. National Technical Information Services,

Springfield, Virginia 22161.

19. Security Clossif. (ofthisrcport) 20. Security Classif. (of this page) 21. No. of Pages 22. Price

Unclassified Unclassified 30

—
Form DOT F 1700.7 (8-72) Reproduction of completed page authorized

I

TABLE OF CONTENTS

1.

2.

3.

4.

INTRODUCTION
● ==...0..............●*O.....0......O

DEFINITION OF EXPERT SYSTEMS*.*

2.1 FORMALISTIC VIEW OF EXPERT SYSTEMS .●●● ...

2.2 PROBLEMS THAT ARE AMENABLE TO SOLUTION
BY EXPERT SYSTEMS0............00..........*.O

2.2.1 DIAGNOSIS
●●

2.2.2 INTERPRETATION/CLASSIFICATION

2.2.3 PREDICTION/FORECASTING

2.2.4 DESIGN ..=-..........● 0.....................

2.2.5 PLANNING
● *==..*.............0..

2.2.6 MONITORING
●●●*.*.

COMPONENTS OF EXPERT SYSTEMS0.......00........OO.

3.1 KNOWLEDGE BASE ● o.......................0.. ..0..0.

3.1.1 KNOWLEDGE REPRESENTATION SCHEMES

3.1.2 RULE-BASED KNOWLEDGE REPRESENTATION SCHEME. .

3.1.3 FIUAME-BASED KNOWLEDGE REPRESENTATION SCHEME.

3.1.4 REPRESENTING UNCERTAIN KNOWLEDGE

3.2 INFERENCE ENGINE
● *..● ● ● ...●

3.3 USER INTERFACE
● 0.......00...0 ● .0....

BUILDING EXPERT SYSTEMS ●0. ● ..*...........0

4.1 IDENTIFY THE NEED FOR AN EXPERT SYSTEM

4.2 CLEARLY DEFINE THE APPLICATION FOR THE
EXPERT SYSTEM

4.3 IDENTIFY THE EXPERT

1

2

2

4

4

5

5

6

7

8

8

8

9

9

11

12

13

14

15

16

17

17

TABLE OF CONTENTS (CONTINUED)

4.4

4.5

4.6

4.7

4.8

4.9

IDENTIFY THE EXPECTED BENEFITS OF THE
EXPERT SYSTEM0.

KNOWLEDGE ENGINEERING

SYSTEM DESIGN AND DEVELOPMENT ●000

VERIFICATION AND VALIDATION

SOFTWARE TOOLS● ● ● ● ● ...● .●●● ..

DISTRIBUTING AND MAINTAINING EXPERT SYSTEMS ...*.*

4.9.1 DISTRIBUTION●● ..● .● ...● .●

4.9.2 MAINTENANCE0.0.. ●

REFERENCES● 00................0..........*O

18

19

19

20

23

23

23

24

26

I

DEVELOPING EXPERT SYSTEMS

1. INTRODUCTION

Expert Systems represent a technology that is gaining
acceptance in many industries but have not received the prominence
they deserve in the highway community. The Federal Highway
Administration (FHWA) and others are beginning to consider this
technology for its potential application in highway engineering.
Expert systems are computer programs that include a simulation of
the reasoning and problem solving processes of human experts. These
programs offer a means to capture the knowledge and experience of
current professionals and organize, save, and apply this
information to further the highway program. These programs cannot
replace the human expert or decisionmaker or trainer; but they are
nevertheless a valuable tool for the transportation specialist.

This document provides guidelines for the development,
documentation, and distribution of microcomputer-based Expert
Systems. The guidelines are directed at expert systems developed
for wide distribution, not systems developed for use by a single
or small number of users. It is the intent of these guidelines to
promote broad acceptance of the use of expert systems, allowing
maximum flexibility to each application. The following are
important elements of a successful Expert System development
program:

* A firm commitment of resources and support by executive
management are critical elements for assuring the success of
an expert system development.

* Within the organization, there must be an influential advocate
of the Expert System. Ideally this includes both a developer
and a user.

* The end users must be identified and their needs and skills
considered. The requirements and needs of the end user must
be a major factor in the systemts planning and design.

* Both the problem to be addressed and the expected output from
the expert system must be clearly defined.

* There are recognized experts in the field and there is general
agreement among these experts on the knowledge required to
solve the problem.

* The system should be demonstrated at identified milestone
points during the development process. Three demonstrations
are recommended.

1

I

2s DEFINITION OF EXPERT SYSTEMS

The most distinguishing characteristic of Expert Systems-type
computer programs is that they are designed to mimic the problem
solving behavior of one or more experts in the field of
application. In the ideal case, a given Expert System contains an
exact model of the reasoning processes that the expert(s) would
use in solving the set of problems the Expert System is designed
to solve. This means that in the ideal case the Expert System
would reach the same conclusion(s) the expert(s) would reach if
faced with the same problem.

The utility of a given Expert System depends on: (1) how
faithfully it mimics an expert and (2) the level of expertise the
expert has in the problem domain. If the Expert System’s model of
the expert’s expertise is “good” and the expert himself (or
herself) is ‘~good”then the Expert System will perform admirably.
However, models can never be 100% accurate and no expert is
omniscient. Because of this, it is important that users of Expert
Systems exercise caution in interpreting the answers produced by
these systems.

2.1 FORMALISTIC VIEW OF EXPERT SYSTEMS

An Expert System, as does any computer program, consists of:
(1) a set of inputs; (2) a set of outputs; and (3) a set of
function modules which are designed to map the set of allowable
inputs into the desired set of outputs. Figure 1 provides an
illustration of how these various components of a typical Expert
System interrelate. Using the system analysis formalism, the model
of a typical Expert System includes:

(1) A problem (i.e., the set of allowable inputs),
(2) A solution (i.e., the set of desired outputs),
(3) A Knowledge Base function module,
(4) An Inference Engine function module, and
(5) A User Interface function module.

The primary purpose of the Knowledge Base module is to serve
as a repository for the Expert System’s domain specific problem
solving knowledge and to provide this knowledge on demand to the
system’s Inference Engine module. The knowledge base also
interfaces to the User Interface allowing the user to add, delete
and modify this knowledge.

The primary purpose of the Inference Engine module is to
develop solutions to the user’s problem(s). In so doing it uses
various types of reasoning strategies to infer solutions from both
Knowledge Base supplied information and user supplied information.

2

Figure 1
Block Diagram Of An Expert System Model

Problems * USER ● Solution

Data b INTERFACE
b

4

vr 4

INFERENCE

ENGINE

b
4

.

*t i

KNOWLEDGE
BASE

d

Request For Data

3

The role of the User Interface module is to provide a means
for the Expert System to receive instructions and data from users
and to transmit results and requests for more information to the
user. The user interface module also allows the user to change the
Expert System’s knowledge base and to specify control and reporting
requirements.

2.2 PROBLEMS THAT ARE AMENABLE TO SOLUTION BY EXPERT SYSTEMS

There are a number of different ways to define the types of
problems that can be addressed by Expert Systems. Several different
categories have been discussed in the Expert Systems literature
(see for examples, References 1 and 9). The categories discussed
below cover the problem types that are applicable to highway
related Expert System development.

2.2.1 Diagnosis

The basic problem in diagnosis is to examine a systemls outputs
(i.e., its symptoms) and to infer a cause (hence a remedy) for
these symptoms. For example, in a pavement management system, the
symptoms might be distress data (e.g., number of potholes) , the
cause might be weather, and the remedy might be local patching. The
types of knowledge that are typically used in modelling diagnostic
problems include:

* How does the system “normally” behave? (i.e., what facts do
we know about the steady state behavior of the system?)

* What rules relate specific symptoms to specific causes?

* What rules relate specific causes to specific remedies?

The goal of the system diagnosis effort is to map system symptoms
into either a specific cause for system malfunction or a set of
candidate causes.

The specific problem solving operations that are performed
during an attempt to diagnose the reason why a sYstem is
malfunctioning depends upon the type of system being diagnosed.
For systems such as most hardware and software systems where the
problem solver is able to test the system down at the subcomponent
level, problem solving generally involves the top-down generation
of inputs and the comparison of the resultant outputs to the
expected outputs. This process is performed in an iterative
fashion, moving down from the system level to the subsystem level
until a cause for the system malfunction has been determined.
Diagnostic problem solving for non-decomposable systems (such as
biological systems) is normally done by attempting to match the
system’s symptomatic behavior with the symptoms that would be
induced by some candidate set of causes of system malfunction.

4

Expert System-based diagnostic systems are normally designed
to assist a human diagnostician by searching through the possible
causes of system malfunction to generate a possible set of
candidates. The human diagnostician then chooses the most likely
cause from this candidate set(or collects more data).

2.2.2 Interpretation/Classification

The basic problem in interpretation/classification is
essentially an identification problem. That is, data representing
features or attributes of some entity is presented. This unknown
entity is identified by comparing these features to’those of a set
of known entities. An example of this is the problem of choosing
the appropriate delivery system for a new technology. There is
a known set of delivery systems (technical report, seminar, film,
brochure, etc.) with known features (cheap/expensive,
technical/non-technical, quick/slow, etc.). The features of the
target audience for the delivery system are compared with the
features of the known delivery systems to determine the most
appropriate delivery system for this audience.

The kind of knowledge that is typically used by expert systems
performing interpretation/classification include:

* What facts are known about the features of the known objects?

* What rules are known about what constitutes a
between sets of features?

* How much confidence should we have in any given

Expert System which solve problems in this area
to model the pattern matching ability of someone who
in identifying objects in the problem domain.

2.2.3 Prediction/Forecasting

The basic problem in prediction\forecastinq is

“good match”

match?

are designed
is an expert

to forecast
the future state of some sy=tem based-on the exi;ting state and a
knowledge of past events. For example, the future conditions to be
forecast may be accident rates. The existing conditions could
include traffic volume, speed limit, road conditions, etc. The
knowledge of past events might include ‘t...when the speed limit
decreased x miles per hour, the accident rate decreases y per
centll.

The kind of knowledge that is typically used by Expert Systems
in this area include:

* What are the constituent components of the system under study?

* How are the constituent components related to each other? How

5

do they interact?

* What rules govern the relationship between a given components
inputs and its outputs?

The goal of prediction/forecasting expert systems is to determine
the most likely system state that will result from the current
system state.

2.2.4 Design

The basic problem in design is to derive a specification of
how some system is to be built. This specification includes
specific components to be used and their characteristics, and the
relationships and interconnections between these components. As an
example, consider the problem of pavement design. The components
of this design might include the base layer or the sub-base layer,
and the characteristics of these components could be thickness,
material, etc.

The kind of knowledge that is typically used in Expert Systems
that design include:

* What facts are known about the environment in which the system
will be embedded? (e.g., we might ask for the above example
“ What is the soil strength? Traffic load?”.)

* What facts are known about the constraints that the design
must meet?

* What facts are known about the candidate set of primitive
building blocks that the design will utilize?

* What rules are known about how these primitive building blocks
can be connected?

* What rules of composition define how modules perform which
are built from the building blocks?

The goal of the system design effort is to determine some
interconnection of primitive building blocks that will satisfy the
constraints on the design. Currently, most Expert System-based
system designers have built-in generic models of the type of system
whose design is desired. In this type of Expert System, the
design process basically consists of specifying the generic model
based on the user’s particular design constraints. Another possible
type of system design is one that both discovers the generic model
which can be used to implement a set of design specifications, and
also specifies the model. Needless to say the task faced by this
type of Expert System is much greater than that faced by a design
Expert System that just has to specify a given generic model.

6

2.2.5 Planning

Planning involves developing a set of actions which when
performed will satisfy some goal. Depending upon the goal, the
performance of this set of actions can occur in series, in parallel
or some mixture of the two. When formulating a plan, the planner
begins with an initial state and develops a set of actions that
causes a movement in stages from the initial state to the goal
state. For example, when developing a work zone traffic safety
plan, the goal is to ensure the safety of motorists, pedestrians
and workers while inhibiting traffic flow as little as possible.
The actions necessary to implement this plan include:

* placement and removal of signs

* application and removal of pavement markings

* placement, maintenance and removal of channelization devices

The kind of knowledge that is typically used by expert planning
systems include:

* What facts are known about the
will be implemented?

* What facts are known about a

environment in which the plan

candidate set of primitive
actions from which the plan will be composed? -

* What facts are known about the constraints on the plan?

* What rules define how a given action moves you “closert~ to
some goal?

Problem solving during the planning process basically involves
determining, for each stage in the plan, an action that will take
one “nearer” to the goal. During this plan development process
candidate actions are examined to see if they satisfy all of the
relevant constraints and cause a transition to a state that is in
some sense “closer” to the goal state. In the absence of some
measure of closeness to the goal state, planning can degenerate
into an exhaustive search of either all the paths that lead forward
from the initial state or all of the paths that lead backward from
the goal state.

As was the case with Expert System designers, most planners
have built-in generic models of the type of plan desired. The
planning process basically consists of providing specific
parameters for the generic model based on the particular
constraints. Again this problem is considerably simpler than the
problem of both deriving a generic plan and providing parameters
for it.

7

2.2.6 Monitoring

Monitoring involves analyzing a system’s output(s) and
implementing an appropriate set of corrective actions if this
output wanders outside of some specified bounds. This is very
similar to “real time diagnosis” except the bounds quite frequently
are dynamic (time-varying) and to be outside of these bounds does
not necessarily represent a flaw or failure. Furthermore, the goal
in diagnosis is always “cure the system”; whereas, in monitoring
the goal is often external to the system. For example, in automated
traffic signal control, traffic flow data would be monitored and
the corrective action taken might be to change the red\green\yellow
signal timings. The specified bounds might change depending on
whether it is rush hour, or a holiday, or special event (e.g.,
Super Bowl).

The kind of knowledge that is typically used in Expert Systems
which perform a monitoring function include:

* What facts are known about the environment in which the system
being monitored is resident?

* What facts are known about constraints on the system?

* What rules are known about the laws and dynamics of the
system? (i.e., if some action is taken, how does it effect
the system?)

Expert System-based monitoring is appropriate in those cases in
which the laws governing a system’s behavior are not precisely
known and therefore heuristic control rules must be used or in
those cases in which special actions must be taken if the system
does not respond to the appropriate feedback controls.

3. COMPONENTS OF EXPERT SYSTEMS

As was stated in the introduction to this document an Expert
System can be modeled as an interconnection of a User Interface
module, an Inference Engine module and a Knowledge Base module.
Following is a more detailed examination of the role that each of
these modules plays in the overall functioning of a typical Expert
System.

3.1 KNOWLEDGE BASE

The Knowledge Base is where the expertise of the system is
stored. Although there are exceptions, the typical module consists
of facts and rules. A fact is simply an assertion that a relation
on a set of objects is true. Examples of facts are:

* “The roadway has 8 lanes.”
* “The job is located on the shoulder of the road.”

8

* “The average speed is 50 mph.”

A rule is an assertion that some fact(s) is true ~rovided that
another set of facts

* “If the user is
the user~s
the user!s
the userts

then
the choice

is true. An example of a rule i’s:

“FHWA” and
organizational level is “administratively and
budget is Illowttand
immediacy is IIcan-waitll

for technology transfer is a brochure.t~

The benefits of a Knowledge Base are:

* Since the knowledge is not embedded in the control flow of
the program, it is much easier to delete, insert and modify.

* The knowledge representation
more likely to be readable and
knowledge which is encoded
languages.

used in the knowledge base is
understandable by the user than
via traditional programming

3.1.1 Knowledge Representation Schemes

In the short history of Expert System development efforts, a
number of different Knowledge Representation Schemes have been
developed. Because there are so many different ways to represent
knowledge in an Expert System, one of the key issues that must be
resolved during the process of developing a given Expert System is
which one will be used to represent knowledge about the problem
domain of interest. The two main criteria that are used to make
this decision are: (1) how well or how closely do the knowledge
structures of a given knowledge representation scheme model the
given problem domain knowledge and (2) how easily can problem
domain specific inferencing be performed on the knowledge
structures of a given knowledge representation scheme.

What follows is a brief description of the most widely used
knowledge representation schemes. These descriptions will be given
with respect to: (1) how the given schemes represent knowledge; (2)
how inferencing can be performed on the knowledge structures which
the given scheme uses; and (3) the characteristics of applications
which are best suited for representation by the knowledge
structures of the given scheme.

3.1.2 Rule-Based Knowledge Representation Scheme

The Rule-Based Knowledge Representation Scheme is probably the
most widely used Expert System knowledge representation formalism.
Systems that use this scheme typically represent knowledge about
the problem domain in one of two forms. One form consists of a
collection of facts. These facts normally have either the form

9

“object has attribute” or the fo~m “object 1 ‘relation’ object 2“.
An example of the first form 1s “The pavement is new” and an
example of the second form is “John likes Mary”.

The second method that is used to represent domain knowledge
in rule-based systems is in the form of “condition-action” rules.
These rules have the form “IF ‘condition is true’ THEN ‘perform
action’ .“ The condition part of these r~les consists of premises
which may or may not be true. These premises (if they are true
within the scope of the Expert System’s knowledge) will either be
stored in the facts portion of the systems Knowledge Base or will
be provided by the system user (either voluntarily or more normally
as a result of prompting from the system).

The action portion of condition-action rules will typically
consist of either an assertion that some fact is true or a
procedure that the system is to perform. An example of the former
is wIf the Car!s lights will not come On,then the CarlS battery iS

dead”. An example of the latter is ~lIf the fasten seat belt
warning tone sounds, then fasten your seat belt”.

The primary type of inferencing technique that is used in rule-
base systems is deductive reasoning. This technique consists of
either: (1) deriving new facts from existing facts and rules or (2)
proving that a given fact is true by combining selected fa~~~ ~;
the knowledge base with selected rules. The former
deductive reasoning is the method used in so-called ISforward
chaining” deductive reasoning and the latter is the method used
in so-called “backward chaining “ deductive reasoning.

Rule-based systems that use forward chaining deductive reaso-
ning to achieve some goal will typically iteratively combine the
facts and rules in the Knowledge Base to form new facts until: (1)
the goal statement has been proven true; (2) no new facts can be
derived; or (3) the system has reached some threshold on the
allowable fact derivations or the allowable amount of processing
time used. This type of reasoning is practical when the;e are
relatively few initial conditions. With this strategy it 1s not
necessary that the possible outcomes, or goals, be identified when
the operation of the system is initiated (as in building designs
from the ground up).

Rule-based systems that use backward chaining deductive
reasoning to achieve some problem goal will typically attempt to
prove that the goal statement is true by assuming that it is true
and then searching through the available domain specific knowledge
(both that portion of the knowledge that resides in the system’s
Knowledge Base and that provided by the system user) to find facts
and rules that will support this assumption. This strategy is
practical where the number of possible outcomes, or conclusions,
are known and can be readily identified.

10

In addition to rule based Expert Systems that use either
forward chaining deduction or backward chaining deduction
exclusively, there are some rule based systems that are capable of
reasoning by alternately performing both forward and backward
chaining deduction. Such systems provide more design flexibility
than single inference technique systems but the effective use of
such hi-directional systems tends to require more skill than does
the use of the single direction systems.

One of the major advantages of using a rule-based knowledge
representation scheme in an Expert System is that this knowledge
representation scheme tends to mirror the way many experts model
the knowledge in various problem domains. As a result, the use of
the rule-base knowledge representation scheme often makes it easier
for the Expert System~s designer to capture and represent the
relevant aspects of a given problem domain.

Rule-based knowledge representation is best used .to model
problem domains whose domain specific knowledge can be represented
as a collection of relatively unstructured facts and rules.

3.1.3 Frame-Based Knowledge Representation Scheme

The Frame-Based Knowledge Representation Scheme is probably
the second most widely used Expert System knowledge representation
scheme and its popularity is growing as more Expert System’s
designers become aware of the power this representation scheme
provides for representing problem domains that consist of highly
structured knowledge. Systems that use a frame-based
representation typically represent knowledge as a collection of
record-like objects that have special features. The record part
of the frame-based representation consists of a record type, a
record name and a set of record fields. Unlike standard record-
type data structures, frames have several special features that
support the reasoning function of Expert Systems.

One such special feature is the ability of frames to be linked
together in a tree-like structure and the facility for default
reasoning to be performed on elements of this tree. This default
reasoning consists of allowing frames to automatically inherit
characteristics from frames that exist higher up in the tree
hierarchy. In other words, in a frame-based system each frame
automatically includes all of the features of its ancestors (i.e.,
its parent frames, its parent’s parent-frames) even though these
features are not specifically spelled out in the given framels
definition.

For example, suppose the frame CBR (Concrete Bridge Rail) is
defined as follows:

Frame_Name --> CBR
Height --> 32 inches
Joint_Spacing --> 15! Ott

11

Cross_Sectional_Area --> 1.8985 sq.ft.
Weight~er_Linear_Foot --> 284.77 lbs

and the frame State_Street_CBR is defined as follows:

Frame_Name --> State_Street_CBR
Frame_Type --> CBR

Weight~er_Linear_Foot --> 155 lbs

Because of the existence of the inheritance mechanism, the Expert
System that contained these two frame declarations would know that
the object, State Street_CBR, is 32 inches in height because its
parent object (I.e. CBR) is 32 inches in height and the
specification for State_Street_CBR did not state otherwise. (NOTE:
The fact that State Street_CBR weighs 155 lbs per linear foot while
its parent frame we~ghs 284.77 lbs per linear foot illustrates that
frame systems allow inheritance to be over-ridden by object
specific knowledge) .

Another special feature of the frame-based knowledge
representation scheme is the ability to attach procedures to frame
fields. These procedures (when they are included within a given
field specification) can be invoked either when a given frame field
value is read or when the field value is changed or both. The use
of this feature can aid frame-based systems in implementing
heuristic searches through the Knowledge Base (by either
restricting access to certain data within a frame or by
constraining the system’s ability to change selected frame’s field
values) . This feature can also be used to provide a trace facility
for use in debugging an Expert System.

Frame-Based Knowledge Representation Schemes support reasoning
(i.e., inferencing) in a number of ways. In addition to default
reasoning via inheritance, heuristic searching via procedural
attachment, frame based systems will typically have a number of
built in predicates which can be used to support reasoning by
testing the properties of frames. Also there is nothing to prevent
frame representations within rule-based systems.

One of the major advantages of using a Frame-Based Knowledge
Representation Scheme is that the use of such a scheme allows the
system’s designer to structure knowledge in logical packages. This
feature is most useful in those problem domains which have highly
structured knowledge components.

3.1.4 Representing Uncertain Knowledge

The most widely used technique for Representing Uncertain
Knowledge in an Expert System is ‘certainty theory!. The need for
such a technique results from the fact that at least part of the
knowledge which a typical expert reasons with is inexact or
uncertain. Sources of this uncertainty include msufficlent data,

12

random data and unreliable data.

The certainty theory method of representing knowledge
associates a parameter represented by the symbol, CF (called the
certainty factor or confidence factor), with every piece of
knowledge in the system. CF is a measure of how certain the source
of a given piece of knowledge is about the validity of the
knowledge. Typically, CF can range between some lower bound L
(usually O) and some upper bound U (usually 10 or 100).

While certainty theory is in wide use in the Expert Systems
field there are a number of problems with its use. Users who
receive Expert System derived answers in terms of certainty factors
should carefully about interpret the assumptions upon which the
answers are based and thus the validity of the answers.

3.2 INFERENCE ENGINE

The Inference Engine is the problem solving component of the
Expert System. Its role is to use the available rules to draw
conclusions from the available facts. When the Expert System is
given a problem to solve, the Inference Engine will first search
the Knowledge Base to determine if it contains the solution to the
problem. If the knowledge Base does not contain the solution then
the Inference Engine will attempt to use the facts in the Knowledge
Base, those that may be input on-line by the user and the rules in
the Knowledge Base to derive a solution to the problem.

The tasks that the Inference Engine performs in attempting this
derivation include:

* Selection of rules to examine
* Evaluation of rules
* Generation of new facts
* Retrieval of facts from both the Knowledge Base and the system

user
* Generation of input problem solutions

The mechanism that a given Inference Engine uses to select the
next rule to evaluate depends upon two main factors. These are the
direction of inference being used (forward, backward or
hi-directional) and whether or not heuristic measures are being
used in the rule selection process.

In forward chaining systems the Inference Engine iteratively
compares the available facts with the available rules and “fires”
all of the rules whose premises are consistent with these facts.
(A rule “fires” when its premise is a fact and hence its conclusion
can be deduced.) This firing of rules will typically cause new
facts to be generated and cause the Inference Engine to evaluate
the systemls rules again. This process continues until either a

13

solution to the problem is attained or no new facts can be derived
from the knowledge that is available to the Inference Engine. In
backward chaining systems the Inference Engine evaluates the rules
by assuming that the problem goal is true and working backward to
determine what conditions must be true in order for this assumption
to be true.

3.3 USER INTERFACE

The User Interface is the means by which the user and the
Expert System communicate with each other. There are various kinds
of dialogue which can take place through this interface. Examples
might include:

* The user specifies a problem to be solved.
* The system requests additional information.
* The user questions why this information is needed.
* The user specifies that certain data is to be reported.
* The system reports a solution to the user.
* The user requests a modification in the knowledge base.
* The user requests an explanation of how a given solution was

derived.

Although all computer programs have user interfaces (no matter how
primitive), the Expert System~s User Interface must be extremely
sophisticated in order to allow the kind of dialogue suggested by
the above examples.

Currentlyr there are a number of methods of implementing the
function of the User Interface module. What follows is a brief
description of a few of the methods that are either in wide use or
are projected to be so.

The menu is the most widely used method of inputting data to
an Expert System. When this method of data input is used the
Expert System presents the user with a menu of input data choices.
Typically the user can either select one of these choices (by
manipulating a mouse pointing device or via a set of arrow keys)
or type in an alternate choice.

The table/list is currently the most widely used form for
outputting the results of an Expert System session. The items in
this list will normally consist of a single solution (for those
problems which have a single deterministic answer) or a ranked set
of possible solutions (for those problems that determine their
answersusingprobabilistic/confidence factor-based calculations) .

Many Expert Systems are capable of presenting the results of
their problem solving in graphical form. Such graphical results
tend to be both more informative and aesthetically pleasing than
are results that are presented in tabular form.

14

Currently, the use of natural language sentences as a means of
user-to-Expert-System communication is at a relatively primitive
stage. While some systems are able to respond to commands that are
given using a limited subset of the English language, there are
currently no widely available systems that can respond to general
English sentences.

In addition to a limited ability to understand natural language
input, some systems also provide their conclusions using natural
language phrases. Most of these systems, however, contain these
phrases in a “canned” form and are not able to compose phrases as
a direct result of interacting with the user.

The next phase in natural language interface design will
involve the incorporation of ~tknowledge based!! natural language
interfaces that are capable of generating and understanding a wide
variety of sentences dealing with specific issues within a given
problem domain. Expert Systems which incorporate this type of
interface will in essence have an Expert System (the natural
language interface) within an Expert System (the problem domain
specific Expert System) .

Another means of communicating with the user is the use of high
resolution images stored on a videodisc. This technique is
currently being developed by FHWA, NASA, and others.

4. BUILDING EXPERT SYSTEMS

Building an Expert System is a complex, time consuming task
that requires the performance of a wide variety of different tasks.
This section provides an overview of the Expert System development
process and the major tasks that must be performed during this
process.

There are four major categories of participants that are
relevant in the Expert System building process. These are the
advocate who champions the building of the Expert System, the end
users of the Expert System, the domain expert(s) whose problem-
solving expertise is to be modeled and the knowledge engineer who
actually builds the Expert System. Although in the process of
building a given Expert System the same person may at various
stages of development take on different roles, it is important that
it is recognized that these roles are distinct.

The role of the advocate who sponsors the development of the
Expert System is to:

* Identify the need for an Expert System
* Define the problem domain
* Identify the intended user community
* Define the expected benefits that will accrue from the

15

intended audience using the Expert System
* Identify the expert(s) whose expertise will be modeled
* Choose the knowledge engineer who will develop the system
* Maintain (or plan for the maintenance of) the finished

product

The end user is critical in the development of an Expert System
and must be involved in the entire development process. The end
user provides:

* Definition of the skill level of the user community
* Information on how problems are addressed in the field vs the

prescribed solutions
* Advice on how the system must function (interact with the

user) to be accepted by the intended users
* A cadre of supporters to test and promote the expert

system once it is completed

The role of the domain expert in the Expert System development
process is multi-faceted. First and foremost, the expertss
problem-solving ability in the domain of interest serves as the
model for the Expert System. Second and equally important, the
expert must assist in quality control on the project and make
certain that the Expert System faithfully represents a useful
portion of the expert~s knowledge. In essence, the expert must
take some responsibility for insuring that the Expert System
faithfully models his expertise. The expert$s major task in
fulfilling this responsibility is to assist in the design of a
comprehensive set of test problems for use in verifying that the
Expert System actually works.

The Knowledge Engineer has the task of developing a faithful
model of the expert’s problem solving ability in the domain of
interest. Other tasks which the Knowledge Engineer must perform
include:

* Implementing the model of the expert~s knowledge
* Insuring that the implementation is as transparent as possible
* Documenting the Expert System
* Testing the Expert System

4*1 IDENTIFY THE NEED FOR AN EXPERT SYSTEM

The issue of identifying a need for an Expert System is one of
the key issues in the Expert System development process.
Identifying a problem and a specific task to perform with an expert
system is difficult. There are usually numerous overlapping
problems and issues in an area of interest and there is often
disagreement among experts on the predominant causes.

Before an Expert System can be developed the need has to be
established and the problem to be addressed clearly identified and

16

defined. The following conditions must hold
development of a system:

*
*

*

*

*

*

*
*

*

4.2

The need for an Expert System must be
The advocate, end user, domain expert,

in order to justify the

identified
and knowledge engineer

must be identified and-committed to th”esuccess of the project
Both the problem to be addressed and the output f~om-the
expert system can be clearly defined
There are recognized experts in the field and there is general
agreement among these experts on the knowledge required to
solve the problem
There is a shortage of experts (either currently or
anticipated) and steps must be taken to alleviate this
situation
The effort required to develop the Expert System in the
problem area can be predicted
Resources are available to develop the system
The domain expert must be able to dedicate sufficient time
and effort to the development
The end users can be identified

CLEARLY DEFINE THE APPLICATION FOR THE EXPERT SYSTEM

Once a suitable problem domain has been defined for the Expert
System, the next task is to narrow the scope of the development
effort by clearly defining the set of problems that the Expert
System will be expected to solve. For example, it is not enough
to specify that a ‘tpavementdiagnostic~~ Expert System be developed.
The scope of such a problem is too broad for the current state of
Expert System technology to be able to handle.

The narrower the scope, the better are the chances that the
Expert System can be successfully built. On the other hand if the
scope is too narrow the application becomes trivial. Since there
is no deterministic method for specifying the appropriate scope for
an Expert System application, judgement must be used in
establishing the scope of the system. In general it is better to
err on the side of too narrow a scope rather than on too broad a
scope. If the scope ultimately turns out to be too narrow, the
formalism of the standard Expert System model makes it relatively
easy to broaden the scope by adding more knowledge to the Knowledge
Base.

4.3 IDENTIFY THE EXPERT

Once a problem domain has been identified and the initial
effort at narrowing the scope of the Expert System application
completed, the expert whose expertise will be modeled in the Expert
System must be selected.

The two main criteria that should
expert(s) are:

17

be used to identify the

* Is the candidate an expert in solving problems in the problem
domain of interest and is he or she recognized as such by the
potential user community? The need for the candidate to be
an expert in the field is essential for the development of the
expert system. The need for the expert to be recognized as
such by the potential user community is primarily useful in
selling the potential users on the viability of the given
Expert System as a useful problem solving tool for them.

* Is the expert available and willing to spend the time
(perhaps months) that will be required to build, test and
field a working Expert System? The expert must be dedicated
to the successful development, testing and evaluation, and
implementation of the system. The failure to identify such
a person and obtain a firm commitment means that the Expert
System project should not be undertaken.

Other useful (but not necessary) characteristics for the domain
expert to have include:

* An ability to effectively communicate
* An orderly mind
* Lots of patience
* A willingness to teach

4.4 IDENTIFY THE EXPECTED BENEFITS OF THE EXPERT SYSTEM

Prior to embarking upon an Expert System development effort,
the expected benefits of such an effort must be clearly defined.
There are two categories of benefits that are typically cited as
reasons for developing an Expert System. One category consists of
concrete, quantifiable reasons such as:

* Saving money (how much)
* Saving time (how much)
* Increasing productivity (how much)
* Enhancing a user’s ability to solve a given set of problems

(how much)

The other category of benefits consists of tangible but not
quantifiable reasons such as:

* The developing of an Expert System can serve as a vehicle
for formalizing the knowledge in a given problem domain and
thereby make a contribution to the clarification and
advancement of knowledge in the domain.

* The developing of an Expert System can serve as a means of
combining the expertise from many experts in a given domain
and thereby allowing the available knowledge about the problem
to be both tested for consistency and synthesized into new and

18

more useful knowledge about problem solving in the domain.

4.5 KNOWLEDGE ENGINEERING

The Knowledge Engineering phase of the Expert System
development process begins shortly after a suitable domain expert
has been chosen. The role of the Knowledge Engineer is to build
and implement a model of the domain expert’s problem solving
expertise for the chosen application.

A good Knowledge Engineer should have extensive experience with
modeling and with implementing computerized models, as well as
being thoroughly versed in the theory and use of Expert System
development tools. Ideally, the Knowledge Engineer should also be
experienced in systems analysis and system design, and should also
have a good knowledge of modern Computer Science concepts such as
top-down design, abstraction and data structuring techniques,
software documentation and software maintenance. In addition, to
successfully reflect the knowledge and reasoning of the expert, the
engineer must also be good in expressing concepts in clear and
concise English (or the language of the domain expert and the end
users) and be proficient with interviewing techniques.

4.6 SYSTEM DESIGN AND DEVELOPMENT

Attempting to replicate expert decisionmaking with a computer
requires a carefully planned, yet flexible, design and development
strategy. The construction of an Expert System, from initial design
to working system, consists of a number of loosely defined steps.
The necessary steps are outlined below:

* Problem Analysis ... Once it has been decided that the task
is suitable for an Expert System, the next step is to gather
the information necessary to implement the system task. Often
this step involves interviewing experts in order to gain an
understanding of the processes they follow in completing the
task. Through the interviews it is necessary to determine
major components of the reasoning process and attempt to
identify the elements that should be included in the system.

* Initial Prototype ... This step is a natural extension of the
problem analysis step. The knowledge initially developed
above is implemented in the Knowledge Base. Other features
such as customized User Interfaces, explanation facilities,
etc. are also developed. A demonstration of the initial
prototype should be conducted.

* Expanded Prototype ... The initial prototype should be tested
extensively by both the experts who were involved in its
development and potential users. This should provide the
developer with an assessment of the conclusions, ease of use,
gaps in knowledge, areas where the knowledge should be

19

refined, etc. These findings are then incorporated to produce
the expanded prototype. At least 2 demonstrations should be
conducted during this phase.

* Delivery System ... Once the final changes have been
incorporated into the system and thoroughly tested, it is then
appropriate to produce the delivery system. The delivery
system differs from the expanded prototype in that it is
optimized with respect to performance, memory requirem@nts~
User Interface, etc. This may entail implementation of some
or all of the modules in a language or development environment
different from the one in which it was developed.

One of the advantages of this type of development methodology
is that it acknowledges the difficulty in specifying meaningful
requirements for Expert Systems. Thus a full set of requirements
do not have to be established before development begins. Beginning
with an initial set of requirements developed in the problem
analysis stage, the requirements can be refined as the prototype
is refined. The prototype itself is a statement of the system
requirements in terms of interfaces, goals, and principal reasoning
paradigms. Thus a description of the prototype can considerably
ease the task of writing requirements.

4.7 VERIFICATION AND VALIDATION

In traditional software engineering, verification and
validation are an integral part of the design and development
process. This is recognized and accepted both by users and
developers. In fact, given the sensitiv: functions that are
performed by software today (e.g., electronic banking, air traffic
control, manufacturing, etc.), it would be hard to conceive of
their absence. However in the developing area of expert systems,
there is relatively little discussion of these critical functions.
In order for Expert Systems software to achieve the same acceptance
as traditional software, these issues must be addressed.

There are many reasons for the current situation. Geissman
and Schultz 6/ discuss many of these. They include:

* Expert System problems tend to lead to a “combinatorial
explosion” in the number of possible states. This makes
exhaustive testing an unattractive, and often infeasible
option.

* The User Interface in an Expert System is extremely complex
and interactive (as discussed in section 3.3) . A computer
program with a simple interface could perhaps be ‘Exercised”
by another test program. This is much more difficult to do
with a complex, interactive interface.

* Liskov and Guttag 11/ state that the “purpose of the

20

*

*

*

requirements analysis phase is to analyze the needs of the
customer and produce a requirements specification of a program
that will meet those needs.” These requirements are difficult
to produce for an Expert System (at least in a form
sufficiently detailed to test against). It should be noted
that it is simple to state that the program should “perform
like an experttc.However, when attempting to test against this
requirement, its fundamental weakness becomes more apparent.

Green and Keyes 6/ cite “a vicious circle where nobody
requires Expert System validation and verification, so nobody
does it. Since nobody knows how to do it, nobody requires it.”

Most of the common techniques for tracing program execution
flow were developed for procedural languages with the basic
control structures of sequencing, branching and looping. The
language of Expert Systems is non-procedural with control
mechanisms (e.g., backtracking) which are totally alien to
the typical programmer based in procedural languages (e.g.,
FORTRAN, BASIC, COBOL, C, PASCAL, ADA, etc.). Hence tracing
program flow from the examination of the program code can be
quite difficult.

The “structured programming’! methodology has been very
successful using a top-down modular ap-~roach to design;
implementation, debugging and maintenance. However, just as
tracing program flow is difficult in Expert System languages,
implementing a top-down modular design may not always be
achievable.

As discussed by Geissman and Schultz 6/, bits and pieces of a
verification and validation methodology currently exist, but have
not been assembled and standardized due to the many applications,
design paradigms, development approaches, and the stage of
development and fragmentation of the industry.

Liskov and Guttag 11/ state that I!...verification involves
reasoning about program texts. This distinguishes verification from
testing, which is always based upon observing computations. In
verification we examine the program text...!! Issues raised during
verification include:

* Does the high-level design reflect the requirements? Are all
of the issues raised during the requirements addressed in the
high-level design?

* Does the detailed design reflect the high-level design?

* Does the code accurately reflect the detailed design?

* Is the code correct with respect to the language syntax?

21

When the program has been verified, we are assured that it has no
“bugs” .

Validation is a determination that the completed program
performs the functions in the requirements specification and is
usable for the intended purposes; i.e. , the program is doing the
job it was intended to do. It is virtually impossible to have an
ironclad guarantee that a program satisfies its specification, so
one settles for having some degree of confidence that a program is
valid. Issues addressed during validation of an expert system
include:

* How well do inferences made compare with historic (known)
data?

* What fraction of pertinent empirical observations can be
simulated by the system?

* What fraction of model predictions are empirically correct?

* What fraction of the system parameters does the model attempt
to mimic?

There is no set formula or algorithm for verification and
validation. However, in addition to the guidelines stated above,
there are some things which can be done to make this process more
effective. First of all, the developer should design for testing.
One way to do this is to consistently adhere to some problem
solving paradigm, (e.g., forward chaining and backward chaining
are the two most common) , as much as possible. The advantage of
this is that once this paradigm is specified, then a great deal of
verification can be done through code walk-through and examination.
In traditional software engineering, adherence to certain
principles, (e.g., single entry, single exit modules) , restrict
what features of the language the developer may choose to use. In
the same way, adherence to a given paradigm may restrict or limit
desirable features of an expert system shell.

In addition to the point above, the developer should also
certify the Inference Engine. This does not imply that one should
necessarily be suspicious of a shell’s claims. However, one can
have two “forward chaining production systems” that give different
results with the same data. Again when consistently using a given
paradigm and certifying that the Inference Engine is indeed
following this paradigm, then verification can be done much easier.

Verification and validation are not fixed steps in the
development process. Instead they should be thoroughly integrated
into development from the very beginning and remain on-going. The
near future should see a more formal approach taken as the expert
systems field matures.

22

4.8 SOFTWARE TOOLS

Expert systems development tools or IIshellsllare available to
aid Knowledge Engineers (and others who play the role of Knowledge
Engineer) in the development of Expert systems, a number of
software vendors have developed Expert System development shells.
These shells are in essence Expert Systems without the Knowledge
Bases. These shells typically provide a built-in User Interface
and a built-in Inference Engine. When using one of these shells
to build an Expert System all the user need provide is a model of
some domain specific problem solving expertise. Most of these
shells provide software tools for coding this model into a form
that is compatible with the Knowledge Base representation that the
shell uses.

4.9 DISTRIBUTINC3 AND MAINTAINING EXPERT SYSTEMS

Once the Expert System development effort has been completed,
the tasks of distribution and maintenance begin. Although there
are no fixed rules governing these tasks, there are some general
guidelines which can make these tasks easier to perform.

4.9.1 Distribution

There are several major criteria that a developer should follow
in order to facilitate the distribution of a given Expert System.

*

*

*

*

Identify the potential user community prior to undertaking
the development of an Expert System. This should insure that
the Expert System actually solves a real set of problems and
thereby, make it easier to sell the designated user community
on the suitability of the tool.

Develop the system using standard hardware and software.
Although there are a number of exotic pieces of Expert System
hardware and software, the cost of these items is often so
high that it is unreasonable to expect potential users to
procure them just to use an Expert System. As a rule of thumb,
any Expert System that is developed in the near term should
run on industry standard personal computers using MS-DOS.

Use development software that does not require distribution
licenses or where an unlimited distribution license can be
purchased for a reasonable fee. There are a number of Expert
System development shells that require that a developer pay
a fee for each system that is distributed to a user. If the
user community is large or if it is expected that several
future versions of the system will be developed, the amount
of money spent on user fees can become exorbitant.

Distribution must be accomplished as specified in Chapter X,

97r.,.

Expert Systems, of the Information Resources Management
Manual.

4.9.2 Maintenance

The task of Expert System maintenance is one that should be
planned for from the inception of the Expert System development
project. Maintenance can be facilitated by following a few good
development rules. These include:

* Make sure that the Expert System design is as transparent as
possible. Since the maintenance phase will probably not be
handled by system designers, it is important that the
structure of the Expert System be as straightforward and clear
as possible. The developers should avoid the use of cryptic
names for objects and knowledge structures within the system.
The developers should also avoid the use of overly complex and
obscure software structures, even though their use may provide
some type of performance benefits. One of the guiding
principals in the development effort should be “keep it
simple.”

* Make sure that the system is well documented. This
documentation should be produced as the system is developed,
not after it is finished. The Knowledge Engineer should
clearly identify where the system’s knowledge resides (e.g.,
in the Knowledge Base in the form of facts and rules and in
the Inference Engine in the form of heuristic search
techniques). The Knowledge Engineer should also document the
inference procedures that the system uses in producing
solutions. There must also appear as part of the
documentation an explicit model of the problem solver that
exists within the Expert System. The documentation should
also provide a comprehensive and well documented test
procedure for the system. In addition,the Expert System
itself should contain an extensive set of both user “Help”
text and text which explains how the Expert System produced
a given solution. These latter two items should be produced
during the development phase and not added after the system
has been built. One of the guiding principles that developers
should use is ‘lapoorly documented system will have a short
useful life.”

* Each version of a given Expert System should have a version
number. This will make it easier to provide users with
up-dated copies of the system.

* Establish a mechanism for soliciting, receiving and acting
upon feedback from the user community. This will facilitate
the identification and removal of “bugs” in the system and
will also make it easier to retro-fit the system to satisfy
specific user community needs after the system has been

24

fielded.

* The above items must be complied with to meet the intent of
Chapter X, Expert Systems, of the Information Resources
Management Manual.

25

REFERENCES

1. Barr, Avron & Feigenbaum, Edward A.
The Handbook of Artificial Intelligence, Volumes 1,2
William Kaufman, Los Altos, California (1981)

2. Brownston, Lee et al
Programming Expert Systems in OPS5
Addison Wesley, Reading, Massachusetts (1986)

3. Cercone, Nick & McCalla, Gordon
The Knowledge Frontier
Springer Verlag, New York, New York (1987)

4. Frost, Richard
Introduction to Knowledge Based Systems
Macmillan Publishing, New York, New York (1986)

5. Galambos, James A. et al
Knowledge Structures
Lawrence Erlbaum Associates, Hillsdale, New Jersey (1986)

6. Geissman, James R. & Schultz, Roger D.
“Verification and Validation of Expert Systems”
AI EXPERT, Vol. 3, No. 2, Feb. 1988

7. Haton, J.P.
Fundamentals in Computer Understanding: Speech and Vision
Cambridge University Press, Cambridge, England (1987)

8. Hayes-Roth, Frederick et al
Building Expert Systems
Addison Wesley, Reading, Massachusetts (1983)

9. Klahr, David et al
Production Models of Learning and Development
The MIT Press, Cambridge, Massachusetts (1987)

10. Kowalik, Janusz S.
Knowledge Based Problem Solving
Prentice-Hall, Englewood Cliffs, New Jersey (1986)

11. Liskov, Barbara & Guttag, John
Abstraction and Specification in Program Development
The MIT Press, Cambridge, Massachusetts (1986)

12. Minsky, Marvin
Semantic Information Processing
The MIT Press, Cambridge, Massachusetts (1968)

26

13. Nilsson, Nils J.
Principles of Artificial Intelligence
Morgan Kaufmann, LOS Altos, California (1980)

14. Pearl, Judea
Heuristics
Addison Wesley, Reading, Massachusetts (1984)

15. Shapiro, Alan D.
Structured Induction in Expert Systems
Addison Wesley, Wokingham, England (1987)

16. Winston, Patrick H.
Artificial Intelligence
Addison Wesley, Reading, Massachusetts (1977)

27

4u. S. Government Printing Office : 1989 - 617-000/88639

I

NOTICE
This document is disseminated under the sponsorship of the U.S.
Department of Transportation in the interest of information
exchange. The United States Government assumes no liability for its
contents or use thereof.

The United States Government does not endorse manufacturers or
products. Trade names appear in the document only because they
are essential to the content of the report.

This report is being distributed through the U.S. Department of
Transportation’s Technology Sharing Program.

DOT-T-89-11

I

DOT-T-89-I 1

TECHI!KUJIWSHFIFM!IE
A Program of the U.S. Department of Transportation

I

	Table of Contents
	Introduction
	Definition of Expert Systems
	2.1 FORMALISTIC VIEW OF EXPERT SYSTEMS
	2.2 PROBLEMS THAT ARE AMENABLE TO SOLUTION BY EXPERT SYSTEMS
	2.2.1 Diagnosis
	2.2.2 Interpretation/Classification
	2.2.3 Prediction/Forecasting
	2.2.4 Design
	2.2.5 Planning
	2.2.6 Monitoring

	Components of Expert Systems
	3.1 KNOWLEDGE BASE
	3.1.1 Knowledge Representation Schemes
	3.1.2 Rule-Based Knowledge Representation Scheme
	3.1.3 Frame-Based Knowledge Representation Scheme
	3.1.4 Representing Uncertain Knowledge

	3.2 INFERENCE ENGINE
	3.3 USER INTERFACE

	Building Expert Systems
	4*1 IDENTIFY THE NEED FOR AN EXPERT SYSTEM
	4.2 Clearly Define The Application For The Expert System
	4.3 IDENTIFY THE EXPERT
	4.4 IDENTIFY THE EXPECTED BENEFITS OF THE EXPERT SYSTEM
	4.5 KNOWLEDGE ENGINEERING
	4.6 SYSTEM DESIGN AND DEVELOPMENT
	4.7 VERIFICATION AND VALIDATION
	4.8 SOFTWARE TOOLS
	4.9 DISTRIBUTINC3 AND MAINTAINING EXPERT SYSTEMS
	4.9.1 Distribution
	4.9.2 Maintenance

	References
	Figure 1

